Indefinite Preservation of Two Long-Span Movable Bridges Through the Use of Structural Monitoring

The Burlington County Bridge Commission's Perspective

Team Introductions

- Michael Ott Director, Projects & Engineering Burlington County Bridge Commission
- Jeffrey Purdy, PE Engineer of Record Pennoni Associates Inc.
- Nathaniel Dubbs, PhD, PE, P.Eng. Associate Vice President, BDI

Burlington County Bridge Commission

MISSION STATEMENT

Provide Burlington County residents, commuters, and visitors with safe, accessible, and affordable bridges, roads and facilities. We are dedicated to serving our customers courteously, and to helping Burlington County prosper by saving taxpayers money through innovative financing programs and by fostering and assisting our neighbors in their economic development and community revitalization projects to ease the burden on local property taxpayers.

Tacony-Palmyra Bridge

- Opened to traffic August 14, 1929
- Total cost (1928 1929) \$4
- Total length 3,659 ft.
- Bascule span is 282 ft.

Revenue - \$34 M

Powering the baseule span are two rolling lifts each with a diameter of 14 ft.

Tacony-Palmyra Bridge – Ship Passing – Planet Mirrorball https://y

TIONAL BRIDGE PRESERVATION CONFERENCE 2024

Burlington-Bristol Bridge


- Opened to traffic May 1931
- Cost to construct \$1.5 M
 - Total length 2,301 ft. Lift span 540 ft.
 - oll Revenue \$16 M per year

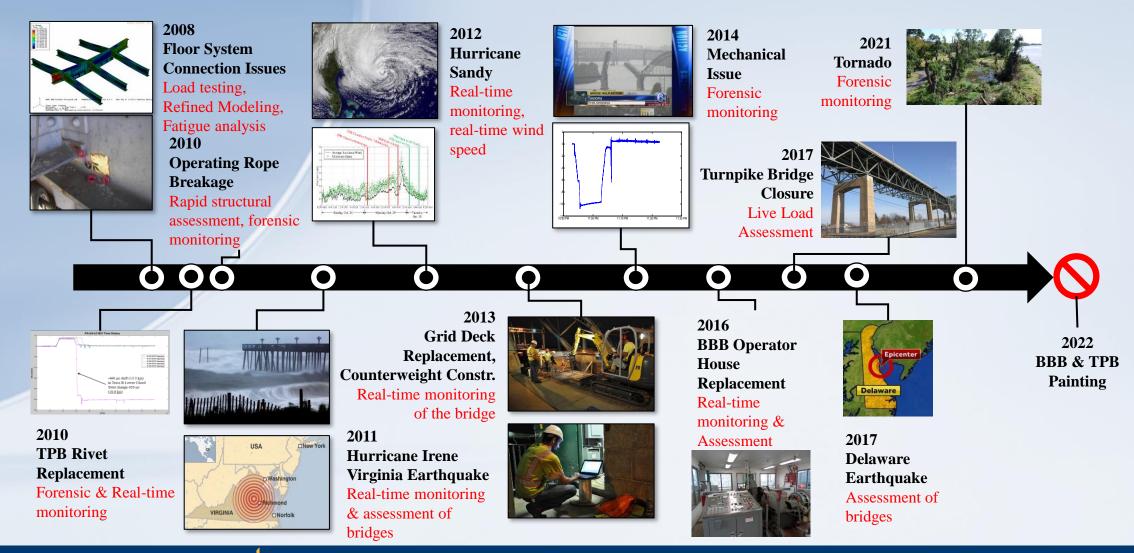
Introduction to SHM - Drexel University

- Burlington Bristol Bridge
 - Fatigue monitoring and load testing in response to discovery of weld cracks
 - Strain results indicated root cause of cracks was not an urgent concern, and BCBC could retrofit the detail in a programmatic manner (\$1M savings)
 - Seeing value in combining inspection, engineering, and instrumentation, BCBC was open to explore other beneficial investigations.

SHM Research and Ad Hoc Systems

- From 2008 through 2017, BCBC engaged Drexel to research and implement monitoring systems to address specific concerns of interest.
- Drexel / Rowan / Burlington County College were awarded an NSF grant to develop and implement a "Learning Bridge" program that used real structural responses from TPB in a classroom environment to teach engineering.

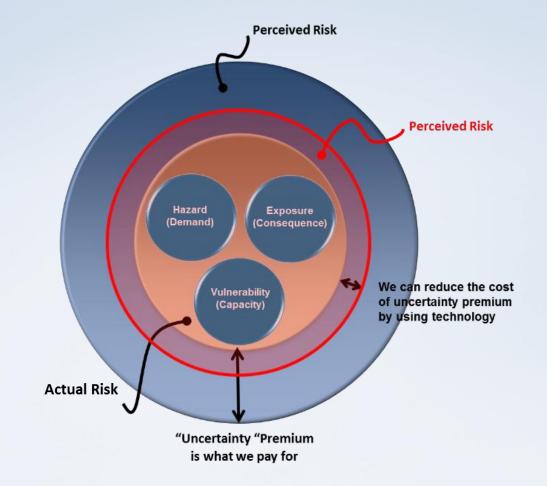
Burlington-Bristol Bridge


- Top chord strain investigation to identify overloaded trucks
- Ambient vibration study
- Laser height monitoring
- Operator house replacement

Tacony-Palmyra Bridge

- Bascule span gusset replacement
- Ambient vibration study
- Site specific weather
- Expansion bearing performance of 540' tied arch span

Unintentional benefits – SHM Use Cases



NATIONAL BRIDGE PRESERVATION CONFERENCE 2024 Innovation for Infrastructure Resiliency

Transitioning Research to Practice

- Systems installed by grad students began to show their age after 10 years of service
- BCBC was already planning IT infrastructure upgrades and wanted to include a permanent / robust SHM approach
- 2022 painting project was going to destroy most of the legacy instrumentation
- BCBC staff were interviewed to understand top concerns and to initiate a risk-based prioritization design

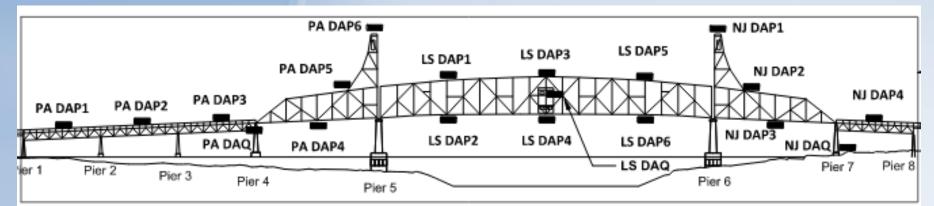
Risk Assessment – High Level Summary

	Limit State	<u>Hazard</u>	Vulnerability	<u>Failure Mode</u>	
		Span Imbalance	Motor Wear	Mechanical Failure	
	Operations	Inaccurate Position Indicators	Overcautious Operator	Long Openings	
	Safety	Ice on Roadway	Unaware Motorist	Traffic Accident	
		High Winds	Large Trucks	Traffic Accident / Structural Impact	
		Speeding Motorist	Vehicle Breakdown	Traffic Accident	
	Performance -	Overloaded Vehicle	Overstressing of Component	Structural Failure	
		Construction	Overstressing / Connection Slip	Structural Failure	
		Unforeseen Event	Overstressing / Connection Slip / Bearing Unseating	Serviceability / Structural Failure	
		Frozen Bearing	Cracking of Support Structure	Serviceability Failure	
	Maintenance	Low Power Supply	Motor Wear	Mechanical Failure	
	maintenance	Unlubricated Machinery	Motor Wear	Mechanical Failure	

System Goals & Objectives (Functional Requirements)

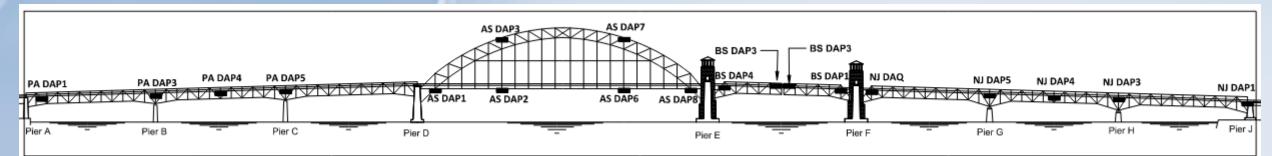
Goal	Objective
	 Establish and track the performance of movement systems
Structural	 Provide stable, long-term structural response baselines for post-event comparison for fracture critical and primary load path elements
	 Establish and monitor opening and seating signatures of lift & bascule spans
	 Record metrics documenting operator adherence to opening protocols through recording of opening control panel button press durations and time stamps
Operations (Movable)	 Monitor performance of electrical and mechanical components during bridge moves
	Provide operator with situational awareness via data
	Provide measures of motor health during openings
Maintenance	Monitor expansion bearing performance for total movement and friction values

System Goals & Objectives (Functional Requirements)

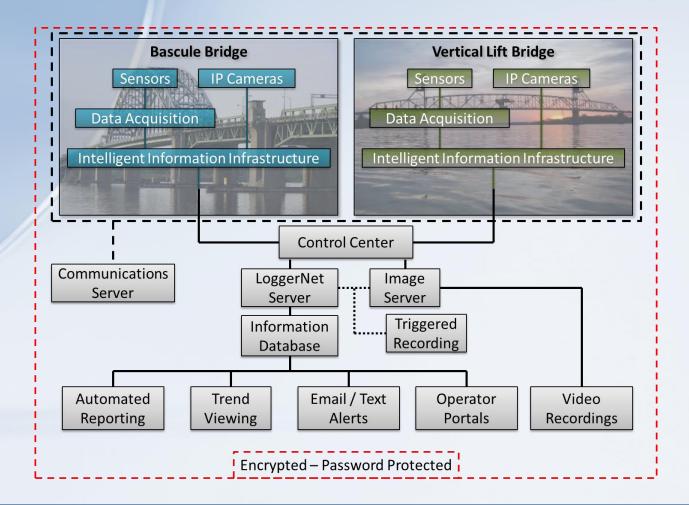

Goal	Objective					
	 Provide bridge operators and managers with bridge under-clearance 					
	 Provide alarms when wind speed has surpassed thresholds 					
	 Unsafe for pedestrians and motorists 					
Safety	 Unsafe for bridge openings 					
	 Monitor roadway conditions and provide notifications of hazardous conditions such as snow, ice, or water and the need for deicing or other maintenance actions 					
	 Detect the occurrence of vehicle-bridge and vessel-bridge impact events 					
System Status /	 Provide real time status indicators for all sensors, data acquisition systems, and SHM services 					
Watchdog	 Provide notification of sensor and communication outages to engineering & BCBC IT Department 					

Goals & Objectives led to Performance Requirements

Example – Structural Performance


Objective	Performance Requirement			
	 Provide status indicator and alerting when bearings do not allow free expansion/contraction of the bridge 			
Establish and track the performance of movement systems	 Identify the impact of the expansion/contraction of the bridge on pier movements/motions 			
	 Identify ramifications of a frozen bearing on adjacent members 			
 Provide long-term 	 Identify significant changes in primary load path force distribution 			
structural response baselines	Track the distribution of live load			
	 Develop statistical bridge signatures for anomaly detection 			

Burlington-Bristol Bridge – SMS Design


Structural Performance	No.	Operations	No.	Safety	No.	Maintenance	
Strain Gauge	180	Incremental Encoder	1	Weather Station	1		
Displacement	12	3-Phase Monitor	2	Visibility	1	Supported by all sensors	
Tilt Meter	8	Current Switch	13	Surface State	2		
Accelerometer	6	Current Transformer	6	Air Gap	2	00110010	
Strand Meter	8			Laser	1		

Tacony-Palmyra Bridge – SMS Design

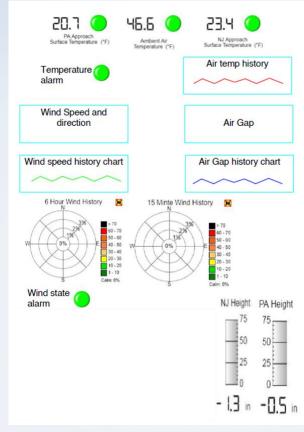
Structural Performance	No.	Operations	No.	Safety	No.	Maintenance
Strain Gauge	168	Incremental Encoder	2	Weather Station	1	Supported by all sensors
Displacement	14	3-Phase Monitor	4	Visibility	1	
Tilt Meter	11	Current Switch	15	Surface State	2	
Accelerometer	4	Current Transformer	12	Air Gap	1	

Bringing it all Together

NATIONAL BRIDGE PRESERVATION CONFERENCE 2024

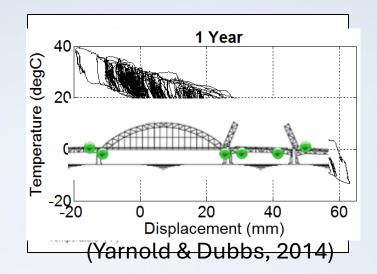
Project Execution

- Design Considerations
 - Integrate with the existing fiber optic network on each bridge
 - 10-year life of the system
 - Recognizing that there will be firmware and software upgrades along the way
 - Sensor sampling rates
 - 5-minute recording interval
 - 100 Hz data collection for openings & triggered events
- Procurement
 - Design-Bid-Build
 - Electrical Contractor (Carr and Duff) with SMS Specialty Engineer (BDI)
 - Construction Award: June 2022
 - Final System Acceptance: February 2024
 - Construction Cost at Completion: \$3,357,500



System Delivery – Operator Dashboard

TPB Dashboard


BBB Dashboard

NATIONAL BRIDGE PRESERVATION CONFERENCE 2024

Engineering Analysis - Alerting

- Three main types of alerts:
 - 1. Threshold exceedance
 - a. Direct (based on clear acceptable criteria – speed, etc.)
 - b. Indirect (based on engineering calculations)
 - 2. Anomalous response
 - a. Statistical analysis (non-physics based)
 - 3. Sensor / communication failure
 - a. "Watchdog"

Challenges - Operational

General

O Bridge openings constrained efficiency of installation
 O Commission was not able to support traffic control
 O Peregrin Falcons nesting with fledglings

Burlington-Bristol Bridge

Work schedule at night due to traffic control

Tacony-Palmyra Bridge

 \circ Rope access on arch span

Challenges - Contractual

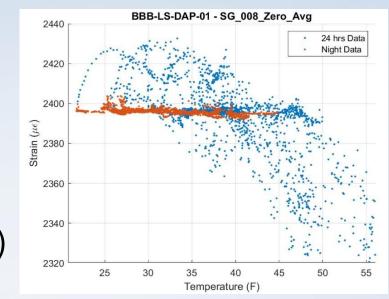
- Prevailing Wage for Specialty Engineer
 - NJ Department of Labor finding was unclear
 - Burlington County Bridge Commission Solicitor was conservative
 - Prevailing wage required
 - Impact schedule
 - Impacted the division of work between the GC and Specialty Contractor
 - Increased costs
- Required construction inspection of all work performed

 Daily notification of when and where work was planned and executed
 Resulted in some work NOT being inspected

Challenges – IT Hosting

• Alerts

Threshold Exceedance


- Data Storage
 - Dynamic data access
 - 5-days of bridge opening data to support forensic analysis
 - o Data archive
 - Analysis of long-term environmental response
 - Analysis of structural performance
 - Legal retention policy
 - \circ 80 GB per bridge per year
- Remote Access

Commission security system makes remote access difficult

Maintaining the System

- Early identification of maintenance issues
 - Watchdog Alerts
 - Power outage
 - Sensor Data Loss
 - Sensor Thresholds
 - Single sensor threshold alert
 - Sensor group alert
- Power interruptions (scheduled and unscheduled)
 - Monthly testing of generators (scheduled)
- Planned network upgrades
- Bridge painting & capital projects
 - Analysis of containment generated strains
 - Finite element analysis construction staging

Lessons Learned

- You are forging a long-term relationship with the engineer and possibly the IT support firm.
 - Forensic Investigations
 - o Alert Threshold revision / refinement
 - Development of new functionality
 - Recurring annual costs for both.
- You will need a robust data network on bridge
 - Fiber optic network provides the needed bandwidth
 - Data retention policy massive amount of data to store, query, and transmit to consultants.
 - Wireless can reduce some costs but comes with other challenges (operation and maintenance of radio-based battery powered hardware)

Thank you!

