

Design Build Rehabilitation of the Sherman Minton Arch Bridge

Presented by:

Daniel Corbin, AICP, PMP | Indiana Department of Transportation

Aaron Stover, PE, SE | Michael Baker International, Inc.

www.in.gov/indot www.mbakerintl.com

Agenda

- Design-Build Best Value
- NEPA and Public Involvement
- Risks & Mitigation Strategies
- Innovative Materials & Construction Techniques
- Alternative Technical Concepts & Design Solutions

SAME IN LA

Design-Build Best Value

-

OD

D

Project Goals

- 30-year service life extension
- Reduce Impact to community and travelling public
- Provide best value to public
 - Budget
 - Timeline
 - Impacts

Rehabilitation Work

- Replacement of Bridge Decks
- Hanger Replacement
- Structural Steel Repairs
- Bridge Deck Overlays
- Traffic Lighting
- Drainage Repairs
- Bridge Painting
- No addition of lanes or reconfiguration of interchanges.
 - I-265 in Indiana to I-264 in Kentucky (3 Lanes Each Direction)
 - Stay within existing ROW

Why Design Build Best Value

- Public Need/Benefits project addresses the needs of the STIP by preservation of existing assets
- Economic Development project critical to maintaining competitive industries and businesses in the region
- Stakeholder Support environmental process allowed for developing stakeholder support
- Legislative Considerations/Financial Feasibility bi-state project with shared and uniquely owned assets – DBBV process allows for both Owners to be considered
- **Project Term** project seeks solutions to gain 30 years of life for the exiting crossing

Why Design Build Best Value

Technical Feasibility

- Project required complex technical design solutions
- DBBV allowed an opportunity for innovative means & methods for associated work
- Subsequent projects demanded a firm requirement for project completion

Project Risks

- Project had a need for innovative traffic management approaches
- Owners and the community had a desire to minimize the time of closures
- As a community resource, project had need for integrated public/media relations support
- INDOT Alternative Delivery Manual
 - https://www.in.gov/indot/projects/home/indot-alternative-delivery/

CONSTRUCTION SCHEDULE 2021-2024

* Construction dates are subject to change due to weather delays and other factors.

NEPA & Public Involvement

2011-2012 Emergency Repair

- Cracks discovered in Tie Girder during September 2011 Inspection
- Emergency closure ordered
- Closed for 5 months
- Repairs included 2.4 million pounds of new structural steel

Better the second time

- How will this be different from 2011-12 Closure?
 - More Cross River Capacity
 - Time to Plan
 - Notice of Closures
 - Tolls (on other bridges)

Environmental Process

- NEPA Environmental study
 - Social
 - EJ Title VI Area
 - Economic
 - Environmental Impacts 100-year Floodplain
 - Wetlands
- Identify Best Approach

Traffic Analysis & MOT

• TWO DECKS OPEN

- MOT 1: Two lanes, two decks open
- MOT 2: One lane, two decks open
- FULL CLOSURE
 - MOT 5: Full Closure
- ONE DECK OPEN
 - MOT 3: Alternating directions AM/PM
 - MOT 4: Reversible lanes AM/PM
 - MOT 6: One direction, two phases

Traffic Analysis

2 Lanes Open 7,400 vehicles (8%)

1 Lane Open 33,400 vehicles (37%)

Full Closure 90,000 vehicles (100%)

Environmental Commitments

- Protection of the Environment
- Public Awareness
 - Notices to public/first responders
 - Coordination for impacts to 4(f) or 6(f) properties
- Minimization of Impacts
 - Holidays and Special Events

Mitigating Traffic Impacts

TYPICAL MOT

• Maintain 2 lanes each direction

PHASE 1

PHASE 2

PHASE 3

PHASE 4

Allowable Closures

- OFF PEAK CLOSURES (Each Direction)
 - Up to 360 nightly closures
 - 60 additional nightly closures (post Substantial Completion for approved work)

Allowable Closures

- **PEAK** (Each Direction)
 - One (1) nine (9) consecutive day Full Directional Closure per calendar year period
 - Up to three (3) weekend periods per calendar year
 - One (1) lane for one (1) fifteen (15) consecutive day closure for As-Built Bridge Reference Document Verification inspection

BI-State Project

NATIONAL BRIDGE PRESERVATION CONFERENCE 2024 Innovation for Infrastructure Resiliency

Structural Steel Repairs Risk

Challenge: Obtaining 30-year service life

- Prescriptive Repairs
 - Cable Hanger Replacement
 - Clean and Paint all Steel
 - Remediate Pack Rust

Structural Steel Repairs Risk

Challenge: Obtaining 30-year service life

- Performance Based Approach for Strengthening
 - Capacity/Load Rating acceptance criteria
 - Known Deficiencies
 - 2019 Inspection
 - DBC field view/Inspection
- Unknown Deficiencies
 - Allowances
 - Stringer end repairs
 - Floorbeam Strengthening
 - Fatigue Crack Arrest
 - Bolt Replacement

Kentucky Approach Piers

- Long term durability concerns
 - Remove all concrete cover on Pier Caps
 - Repair Spalled/Delaminated Pier Columns
 - Cathodic Protection through Galvanic Anodes
- Allowance for patching concrete structures (Not previously identified)

Innovative Materials & Construction Techniques

Bridge Deck Replacement

Full Bridge Deck Replacement

- Sherman Minton (Spans 1, 2, A-C) and KY Approach
- All Bridge Decks shall be CIP Concrete
 - ATC's Allowed (Pre-Cast Panels)
- Match Existing Bridge Profile
- SIP Forms Allowed
 - Partial depth P/S forms not permitted

Utilized E5 Internal Cured Concrete

- Nano Silica (Liquid Flyash)
- Eliminates need for wet cure

Joint Elimination

Sherman Minton Spans 1, 2, A-C

- All Intermediate Joints (28 in all)
 - Replaced with link slabs / -----•
 - DBC required to assess •
- Joint Replacement (Ends)

Panel Point, typ. --

VAVAN

Pier No. 1

Joint Elimination

Kentucky Approach (Spans 1-27)

- Replace total of 10 joints with link slabs
 - Evaluate substructure for D/C
- Semi Integral End Bent Conversion or Encase steel beam ends

Joint Elimination

Indiana Approach

• Eliminated half of existing joints

Link Slab
Semi Integral End Bent Conversion

NATIONAL BRIDGE PRESERVATION CONFERENCE 2024 Innovation for Infrastructure Resiliency

Hydrodemolition

AquaJet Aqua Cutter is a remote controlled and telescoping hydro demolition equipment to be utilized for cover concrete removal

Hydrodemolition

Alternative Technical Concepts & Design Solutions

TIONAL BRIDGE PRESERVATION CONFERENCE 2024

Temporary Barrier ATC

DBC Proposed Temporary Barriers

ODOT 32" PCB Contraflow Condition Steel TL-3 Temp Barrier Adjacent to Work Zone

Barrier ATC

Substitute FT Barrier for TF-2 Barrier

Technical Provisions

Alternate Technical Concept

Fascia Stringer Repl.

Value Added Proposal

- Replaced Fascia Stringers
- Spans 1-2 (Arch) & A, B, C (Truss)
 - Cracking and Deterioration

Hanger Replacement

Internal Hangers vs External

- Eliminated temporary hanger
- Leave existing weldment in place

Questions?

Daniel Corbin, AICP, PMP

Senior Project Manager dcorbin@indot.in.gov

Indiana Department of Transportation www.in.gov/indot

Michael Baker International, Inc. www.mbakerintl.com

Aaron Stover, PE, SE

Regional Bridge Lead

astover@mbakerintl.com

Michael Baker

