Cold-spray Additive Repair of Corroded Steel Bridge Beams

B. Schagen^{1,3,*}, S. Zhang¹, W. Chen¹, C. Ai¹, H. Chen², A. J. Bedard², H. Quinlan³, A. J. Hart³, S. Gerasimidis^{1,3}

¹UMass Amherst

²MassDOT

³MIT

bschagen@mit.edu

mass

lassachusetts Institute of **Technology**

Infrastructure Resiliency

UMassAmherst

SOUTHEAST

NORTHEAST

College of Engineering

Outline

- Part 1: UMass Bridge program 2015-present
- Part 2:3D scanning for bridgeinspectionhardware, data acquisitionand processing
- Part 3: Corrosion Repair Cold spray AM

Part I Bridge program

Bridge Program

First research group to our knowledge to pack a bridge and bring it to the lab and test it

Since 2019 we have tested 17 beam ends from New England

0.1 0.15 0.2 0.25 0.3 Displacement (in)

Out of Plane Web Displacem A

Bridge Program

Inspection Reports

Massachusetts

- Reports: 123
- Corroded Ends: 1045

New England

Reports: 132

HH‡

Corroded Ends: 915

Experimental Work

Massachusetts

- Bridges: 3
- Tested Ends: 9

New England

- Bridges: 7
- Corroded Ends: 29

Numerical Work

More than 5000 simulated scenarios (FEM and statistics to produce guidelines)

Total > 1960

Total: Beams from 10 bridges

TIONAL BRIDGE PRESERVATION CONFERENCE 2024

Experimental study

NATIONAL BRIDGE PRESERVATION CONFERENCE 2024

Part II: **3D scanning for bridge inspection**

Concrete spalling

Corroded beam ends – Current State-of-Practice

In the field

Taking Measurements

Corrosion Sketches

3D Scanning for Bridge Inspection - Terrestrial

<section-header>

3D Scanning for Bridge Inspection - Process

1. Component Identification

2. Scanning

3. Model Processing

5. Output map generation

3D Scanning for Bridge Inspection - Summary

Higher Cloud Density, detail, and accuracy:

- Around 400,000 points in the selected area to the right and millions of points in the full web height area
- Captures difficult to measure components like pitting and section loss at the edge of the web

Portability and maneuverability:

- Roughly 5 minutes per scan
- Easy to train and learn the scanning process
- Handheld and relatively lightweight machinery allows for easy on-site scanning

TIONAL BRIDGE PRESERVATION CONFERENCE 2024

Part III

Cold-spray additive manufacturing

Cold-Spray built up layers

A36

A36 + intermediate layer

A36 + intermediate layer + built up layers

1200 seconds

50mm

Methodology

1. Obtain corroded substrates from real naturally-corroded steel beams from bridges in New England

2. Cold Spray AM

3. Coupons of composite steel

4. Coupon testing for mechanical properties

Mechanical properties

Maine Bridge Beam

Case Study 1 – Maine Bridge

Case Study 1 – Maine Bridge

NATIONAL CONFERENCE 2024 BRIDGE PRESER Innovation for Infrastructure Resiliency —

Case Study 2 – New Hampshire bridge

Case Study 2 – New Hampshire bridge

Innovation for Infrastructure Resiliency

WESTERN

Outlook

Preserving Our Potition's Transportation Assets

Total cost per mass of CSAM process < 500 \$/lb

Summary

2017

1st in the country to test naturally – real - corroded bridges in the lab

2021

New Bridge Load rating methods adopted in MA Bridge Manual

AASHTO proposal for national adoption 2025-2026

2024

2022

Acquisition of portable cold sprayer (UMass)

2

Thank you!

Questions?

Brian Schagen

Visiting PhD candidate at MIT | PhD candidate at UMass Amherst | MSc. Structural Enginee...

bschagen@mit.edu

Massachusetts

UMassAmherst

College of Engineering

